コミュニケーションブースにお越しの皆さまへ

~よくいただくご質問にお答えします~

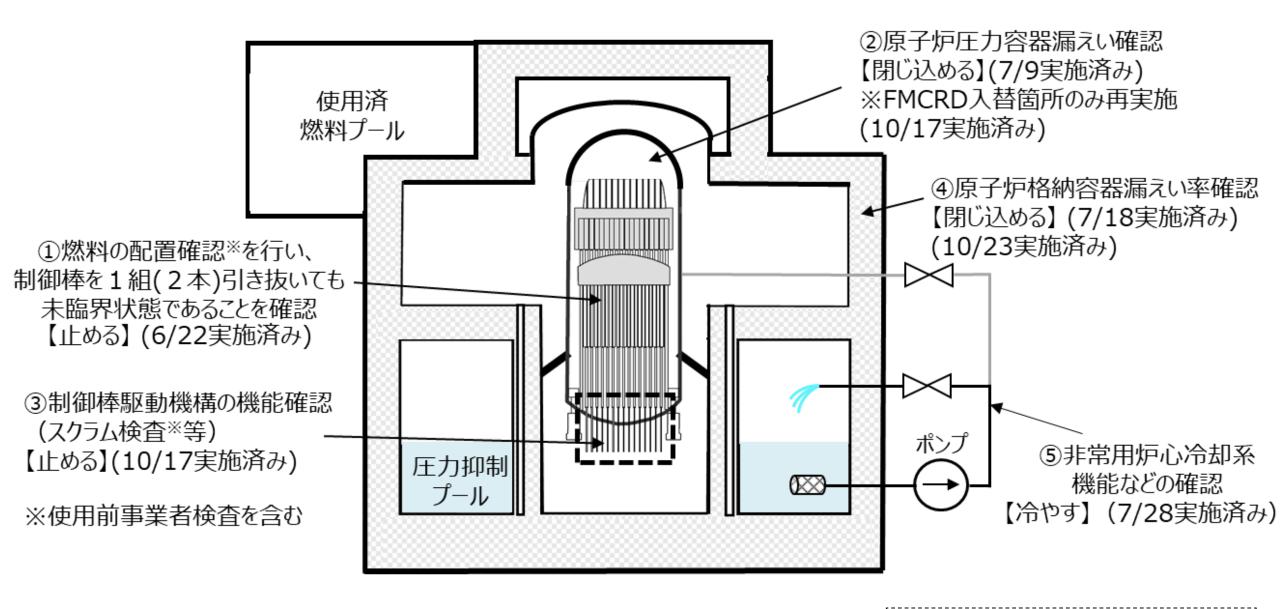
東京電力ホールディングス株式会社 柏崎刈羽原子力発電所

本書の内容を本来の目的以外に使用することや、当社の許可なくして複製・転載することはご遠慮ください。

東京電力ホールディングス株式会社

く目 次>

- Q. もう再稼動できるの?いつ再稼動するの? ・・P1
- Q. 7号機は運転できないと聞いたけど本当? ・・P3
- Q. 地震がきたら発電所で事故が起きてしまうのでは? ・・P4
- Q. 万が一事故が起こったときの訓練はしているの? ・・P8
- Q. 避難が必要となったとき、どうすればいいの? ··P9
- Q. ミサイルが撃ち込まれたり、テロが起きても大丈夫なの? ・・P11
- Q. 未経験の運転員ばかりで運転できるの? ・・P12
- Q. IDカードを不正に使うなどといった警備上の問題はもう 起こらないの? ・・P13
- O. トラブルやミスが多いけど、東京電力って大丈夫なの? ・・P14
- Q. トラブルが起きた際は、隠さず・速やかに公表してほしい。 ・・P15
- O. 県内で電気は使われず、住民にメリットがないのでは? ・・P16
- Q. 燃料プールがいっぱいなのに運転できるの? ··P18
- Q. 電気は足りているのに原子力発電所を再稼働する 必要はあるの? ・・P19
- Q. 核のゴミの処分場所も決まっていないのに、本当に運転 するの? ・・P22
- ※ 地域の皆さまのご関心やご不安に、できるだけお答えしていきたいとの考えから、本冊子の 質問事項は、日々のコミュニケーションの中でいただくことの多いお尋ねをもとに構成しました。


② もう再稼働できるの?いつ再稼動するの?

- △ <u>一通り実施し、再稼働にあたっての技術的な準備が整いました。</u> 再稼働時期は未定ですが、引き続き、設備の維持管理を行う中で気づきがあれば立ち止まり、一つひとつ確実に対応してまいります。また、再稼働は、地域の皆さまからのご理解があってのことだと考えており、これまでの取り組み状況について説明を行っています。
- 安全最優先の発電所運営を実現するため、常に安全を追求するとの視点に立ち、発電所の 目指す姿として4つの柱を掲げて取り組みを進めてきました。
- ・地域の皆さまからご信頼をいただけるよう、これまでの取り組みが「発電所として一定の水準 に到達したこと」を直接お伝えするとともに、様々な媒体を通して説明を行っています。
- これらの取り組みは、**今後も継続していくものであり、**この発電所で働く一人ひとりが、よりよくしていきたいと意識し、**終わりなき改善を重ねていきます**。

●柏崎刈羽原子力発電所の目指す姿(4つの柱)

4つの柱		これまでの取り組み状況		
1	核物質防護事案の各改善 措置項目の効果が十分に 発揮できていること	IDカードを不正に利用した事案等を踏まえた改善措置が 進捗設備と運用の両面で継続的に改善を推進 ⇒P13参照		
2	安全対策工事の完遂と、 主要設備の機能が十分に 発揮できること	新規制基準に基づく安全対策工事を一通り実施設備の健全性確認においても、その機能が発揮できることを確認		
3	緊急時等の対応能力が 十分であること	 各種訓練を積み重ね、福島第一原子力発電所事故時と 比べて対応力は格段に向上 総合訓練は180回以上、個別訓練は33,000回以上実施 運転員は、起動・運転に関する力量を有していることを確認 ⇒P8参照 		
4	発電所で働く全ての人々が 円滑にコミュニケーションを 図っていること	 あいさつ運動等、様々な施策の展開により、コミュニケーションは円滑となり活性化。 本社機能移転による発電所と本社との現地・現物での議論 地域共生活動等を通じた、地域の皆さまの声・想いの業務への反映 「自ら課題や気づきを発見・改善する取り組み」の定着 ⇒P14参照 		

●6号機原子炉系、燃料装荷後の健全性確認 – 4つの柱②

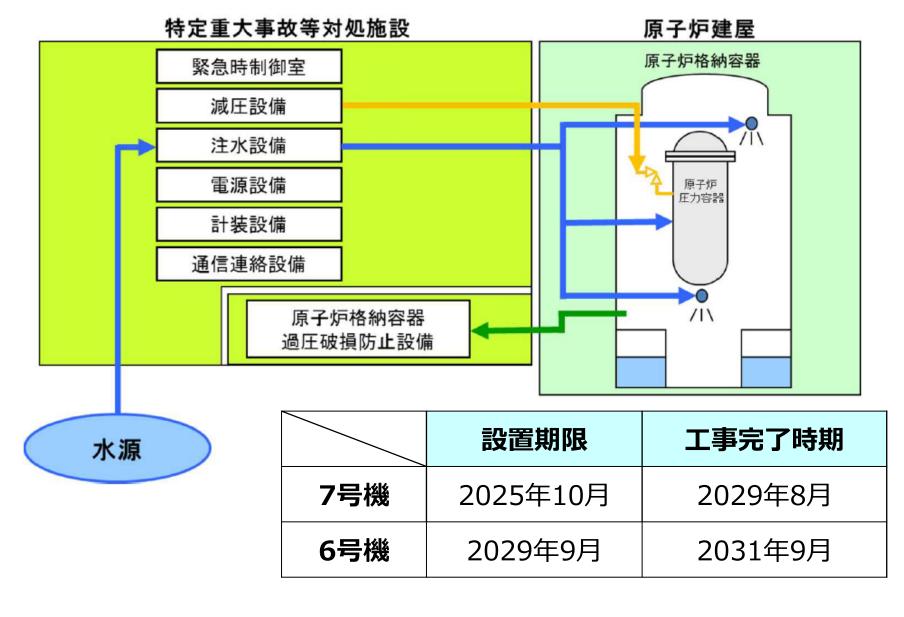
※ 日付は健全性確認の実施日

●コミュニケーションの取り組みの一例 - 4つの柱4

~コミュニケーションに関する協力企業社員・当社社員の声~

たなべ ちかし **田辺 親** 新潟環境サービス株式会社 柏崎事業所 所長

毎朝の「あいさつ運動」を弊社でも取り入れ、褒める仕組みの構築と感謝の輪を 広げたいという思いから「サンクスカード」の運用も進めています。


② 7号機は運転できないと聞いたけど本当?

 7号機は、2025年10月13日に特定重大事故等対処施設 (以下、特重設)の設置期限を迎え、長期停止となることから、 今後は6号機の起動準備に、集中していくこととしました。 7号機は、特重設の工事完了後に運転ができるよう取り組んで まいります。

●特定重大事故等対処施設の概要

- ・特重設は、発電所への「意図的な航空機衝突等による大規模な損壊」で広範囲に設備が 使えない事態において、原子炉格納容器の破損を防止するためのバックアップ施設です。
- ・特重設には設置期限が決められており、<u>設置期限前であれば運転が認められていますが、</u> 設置期限までに完成しない場合は、運転を止める必要があります。

~関連してよくいただくご質問について~

Q. 特重設はテロ対策施設と聞くけど、後回しになってもいいの?

A. 特重設は、テロ等により、原子炉格納容器の破損を防止する設備が使えなくなった際のバックアップ施設であり、直接的なテロ対策は、既に取り得る対策を講じています。

⇒P11参照

② 地震がきたら発電所で事故が起きてしまうのでは?

発電所では、最大級の地震・津波を想定して重要設備の設計や 防潮堤を設置しています。事故に至ることがないよう、安全対策 設備を多重化・多様化し、万が一、放射性物質を大気中に放出せざるを得ない場合でも、事故発生から約10日間、格納容器内に閉じ込めるとともに、「フィルタベント設備」により大気中へ放出する放射性物質を大幅に低減します。

● 柏崎刈羽原子力発電所で想定している地震・津波

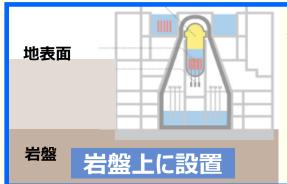
- <u>**敷地周辺で考えられる最大級の地震(マグニチュード8.1***)</u>に対して、十分耐えられるように重要設備を設計しています。
 - ※ 2024年1月の能登半島地震はマグニチュード7.6、2004年10月の中越地震および2007年7月の中越沖地震はマグニチュード6.8でした。 マグニチュードが1.0上がると地震のエネルギーは約30倍になります。
- 発電所に到達しうる最大級の津波の高さとして、7~8mを想定していますが、これを上回る 海抜15mの防潮堤を設置し、津波に備えています。

●地震·津波対策

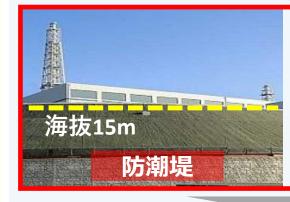
【凡例】 …福島第一原子力発電所事故以前からの対策

…福島第一原子力発電所事故後の新規制基準を踏まえて追加・強化した対策

地震対策の一例



過去の地震や、発電所周辺の 陸海域の広範囲な地質調査の 結果に基づいて、敷地周辺で 考えられる最大級の地震を想定。


津波対策の一例

発電所周辺の津波に関する文献 調査や活断層評価結果等を 踏まえ数値シミュレーションを実施。 その結果に基づいて、発電所で 考えられる最大級の津波を想定。

原子炉建屋は、地震の揺れを受けにくい強固な岩盤上に設置。

海抜12mの敷地に高さ約3mの 盛土をし、海抜15mの防潮堤を 設置(5~7号機側)。

※新規制基準によらない自主対策

建屋内の配管等のサポート (支え)を各号機1,400~ 3,000箇所追加。 中越沖地震以降から実施して きており、基準地震動への適合も 確認。

事故時に炉心を冷やす装置や、 非常用電源等、重要な設備が ある部屋には、浸水から守るため 水密扉を設置。

● 安全対策の多重化・多様化(電源・冷却手段の確保)

- ・ **発電所内のすべての電源が失われた場合を想定し**、原子炉を冷却する機器などに電気を供給するための**代替電源を複数用意**しています。
- ・ 代替電源も失い、**電動の冷却設備が使えなくなった場合でも**原子炉を冷却できるように、 さまざまなタイプのポンプや設備も用意しています。

【凡例】

…福島第一原子力発電所事故以前からの対策

…福島第一原子力発電所事故後の新規制基準を踏まえて追加・強化した対策

電源確保の一例

事故時に発電所外部から 必要な電力を受電できる ように外部電源(送電線) を5回線確保。

冷却手段の確保の一例

電源駆動のポンプや原子炉の蒸気を駆動源としたポンプを用いて原子炉へ注水。

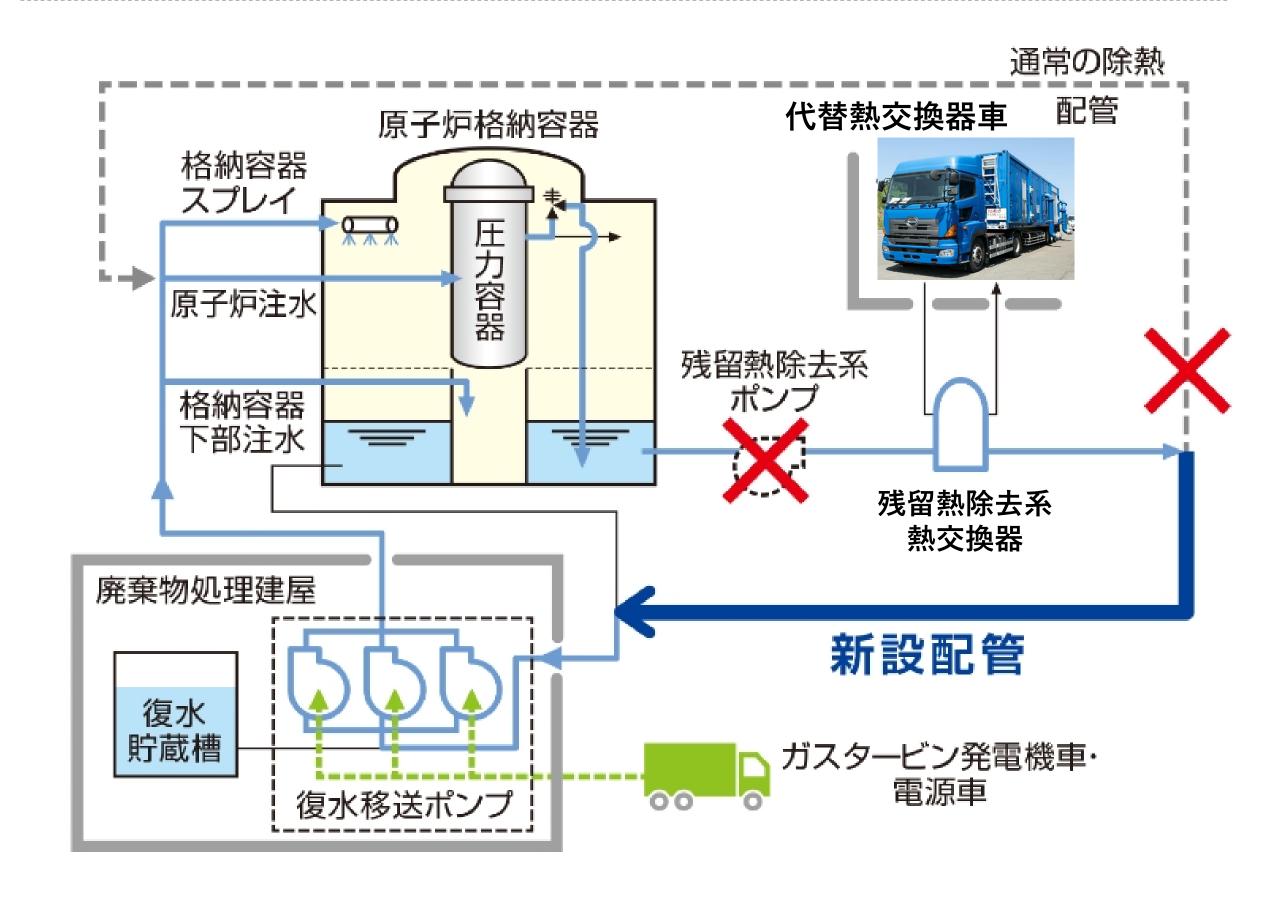
外部電源を失った場合に 起動し、必要な電力を供給。 他号機への融通も可能。

全ての電源を失った場合でも 原子炉の蒸気を駆動源に 原子炉へ注水。

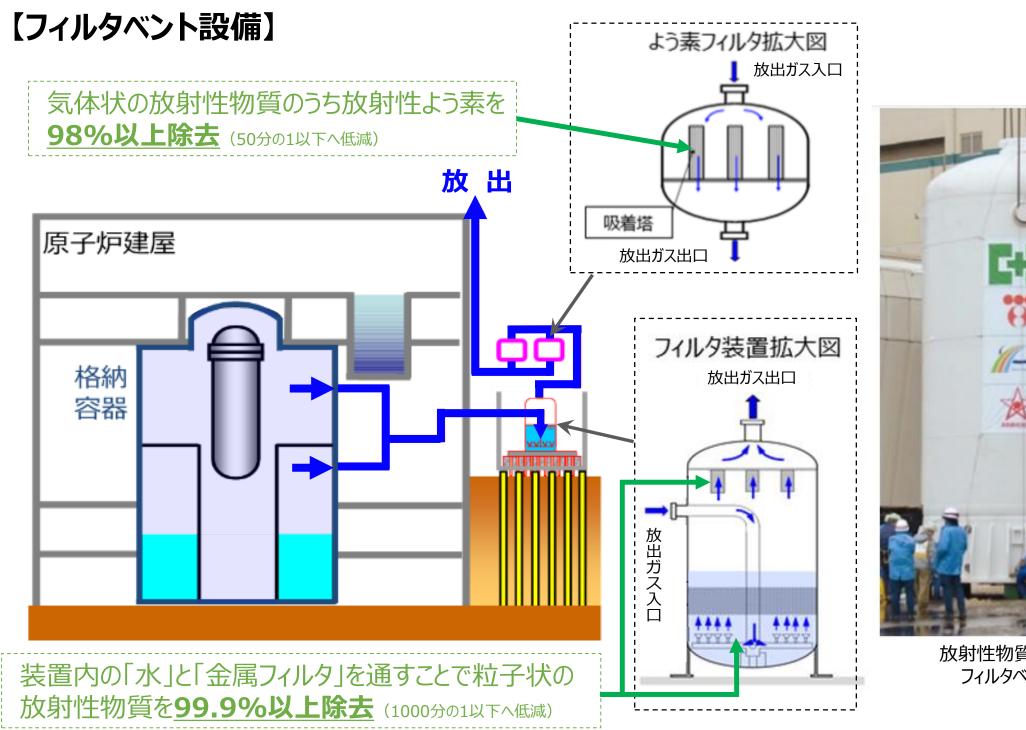
軽油の燃焼ガスでタービンを回して電気を作る発電機を搭載し、大型の冷却設備を運転できる電源を確保。 津波の影響を受けない場所に配備。

電動の注水設備が使えなく なった場合でも、原子炉や 使用済燃料プールに注水。 津波の影響を受けない場所 に配備。

機動性に優れ、必要な時に 必要な場所に移動して電気 を供給。


津波の影響を受けない場所に配備。

原子炉等を冷やす既存の 設備が使えなくなった場合に、 原子炉を冷やす設備。 津波の影響を受けない場所 に配備。


● 代替循環冷却設備

- ・原子炉などを冷やす系統が使えなくなった場合に、新たに設置した配管や代替熱交換器車 などを活用して、格納容器内の水を循環させ、格納容器内の圧力と温度を下げます。
- これにより、事故発生から**短時間での放射性物質の放出や格納容器破損を回避**することができ、**放射性物質を約10日間、格納容器内に閉じ込めておく**ことができます。

● フィルタベント設備

- フィルタベント設備は、**フィルタ装置を通して放射性物質を取り除く設備**であり、大気中に 放出する**粒子状の放射性物質(セシウム等)と放射性よう素を大幅に低減**します。
- 代替循環冷却設備を使用していても、格納容器内の可燃性ガス(水素、酸素)の濃度が 上昇することから、**フィルタベント設備を経由して大気への放出が必要**になります。
- 放出される放射性物質の大部分は気体状の希ガスで構成され、大気中で広がって薄まる 性質をもっており、上空を通過する間は屋内にとどまる等の対応が有効です。

放射性物質を除去する フィルタベント装置

【フィルタベント設備使用時のイメージ図】

② 万が一事故が起こったときの訓練はしているの?

● 緊急時の対応力強化に向けた取り組み

- ・ 総合訓練は、**津波や地震などの自然災害や過酷事故を想定した訓練を行う他**、あらかじめ シナリオを知らせないブラインド訓練を実施することで、**組織と社員一人ひとりの緊急時に おける対応力を強化**しています。
- 個別訓練では、緊急時の対応に必要な電源を素早く供給するための<u>電源供給訓練</u>、 原子炉へ迅速かつ安定した注水を実施するための<u>注水接続訓練</u>、津波によるガレキ等を 想定したガレキ撤去訓練等を行っています。

<総合訓練の様子>

YouTubeはこちらから

<個別訓練の様子>

電源供給訓練

注水接続訓練

ガレキ撤去訓練

② 避難が必要となったとき、どうすればいいの?

国や自治体からの指示に基づき、避難等を実施することになっております。なお、原子力災害対策を重点的に行う区域として、原子力発電所からの距離に応じて2つの区域に分けられており、その区域によりとるべき行動が異なっております。

発電所より半径概ね5km圏の区域、PAZでは放射性物質 放出前に予防的に避難等をすることになっております。

発電所より半径概ね5~30km圏の区域、UPZでは放射性物質放出に備えて屋内退避し、放出後は放射線量に応じて避難等を実施することになっております。

● 2つの区域(PAZ·UPZ)

PAΖ (予防的防護措置を準備する区域):

Precautionary Action Zone

⇒ 急速に進展する事故等も踏まえ、放射性物質が放出 される前の段階から予防的に防護措置を準備する区域

UPZ(緊急防護措置を準備する区域)

<u>Urgent Protective Action Planning Zone</u>

⇒ 事態の進展等に応じて、屋内退避や段階的な避難等 の緊急防護措置を準備する区域

新潟市 郊彦村 森市 三条市 柏崎刈羽 原子力発電所 出雲崎町 見附市 村崎市 小千谷市 魚沼市

PAZ

原子力発電所を中心とする半径概ね5km圏

柏崎市の一部(高浜地区、荒浜地区、松波地区、南部地区、二田地区、中通地区、西中通地区) 刈羽村

「原子力だよりVol.163 (R7.6) | 新潟県制作・発行を基に作成

UPZ

原子力発電所を中心とする半径概ね5~30km圏

柏崎市の一部(左記地区以外の全ての地区) 長岡市の大部分(栃尾地域を除く全市域) 小千谷市、十日町市の一部、見附市、燕市の一部、 上越市の一部、出雲崎町

●原子力災害時にとるべき行動

	区域	放射性物質放出前	放射性物質放出後	
原子力発電所を中心とする ※避難することで		避 難 ※避難することで健康リスクを高めると 判断される者は屋内退避		
	UPZ 原子力発電所を中心とする 半径概ね5~30km圏	屋内退避 ※自宅が倒壊等した場合は、近隣の 避難所等で実施	屋内退避機続 ※空間放射線量率の測定結果により、 基準値を超えた地域は、避難等を実施	

「原子力だよりVol.163(R7.6)」新潟県制作・発行を基に作成

●参考(原子力災害時の避難体制)

- 避難等が必要となった場合には、国や関係自治体が避難体制を構築することになっております。さらに、不測の事態が生じた場合には、国や関係自治体からの要請により、実動組織
 (警察・消防・海上保安庁・自衛隊)が必要に応じて各種支援を実施することになっております。
- また、当社は2020年に新潟県と「原子力防災に関する協力協定」を締結し、住民避難を 支援する要員や車両の確保等の協力体制を構築しました。
- 要員としては東京電力グループ全体で**約2,500名の避難支援体制を整備**し、配慮が必要な方の搬送を支援する**福祉車両を31台配備**しています。
- ・ 新潟県原子力防災訓練への参加等を通じ、**要員の力量・対応力の向上**に努めてまいります。

<原子力防災に関する協力協定(抜粋)>

- スクリーニング (避難退域時検査) に関する要員及び資機材の支援
- 社会福祉施設に入所する要配慮者の避難に関する要員及び車両の支援

主な避難支援の内容

PAZ

(原子力発電所を中心とする**半径概ね5km圏**)

- ✓ 社会福祉施設に入所する配慮が必要な 方等の搬送可能な福祉車両を配備
- ✓配慮が必要な方の搬送支援
- ✓ 避難経由所の運営支援

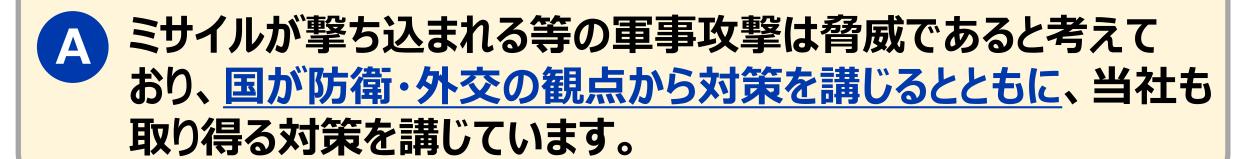
福祉車両 (避難支援車両)

配慮が必要な方の搬送支援

UPZ

(原子力発電所を中心とする半径概ね5~30km圏)

- ✓ 避難退域時検査場所の運営支援 (受付、車両誘導、検査、除染等)
- ✓避難経由所の運営支援
- ✓ 緊急時モニタリング



避難退域時検査(車両検査)

避難退域時検査(住民検査)

② ミサイルが撃ち込まれたり、テロが起きても大丈夫なの?

●テロ対策

- ・<u>警察や海上保安庁と連携した合同訓練</u>を定期的に実施するとともに、**不審者の侵入防止** や警戒等の措置を常に行っています。
- ・意図的な航空機衝突等により、原子炉を安全に保つための電源や注水機能が失われた場合でも、バックアップできるよう様々な役割の可搬型設備を配備し、**緊急時に動かせるよう** 日々訓練を行っています。

~豊かな外部の経験をもつ社員の声~

警察や消防のOB等の外部人材を積極的に採用し、その知見を改善につなげる等、対応力の向上に努めています。

なかむら あきら

中村 昭 元糸魚川警察署長

42年間新潟県警察官として勤務し、糸魚川警察署長を定年退職後、2021年4月より発電所に勤務 県内警察と発電所のコミュニケーションの架け橋となり、発電所警備等に知見を 展開することで、発電所の安全性向上に努めています。

たなべ まさとし **田辺 昌敏** 元柏崎市?

出辺 昌敏 元柏崎市消防署長 42年間柏崎市消防署に勤務し、柏崎市消防署長を定年退職後、2022年4月より発電所に勤務 発電所の自衛消防隊へ、前職の経験を活かし実災害に応じた実技指導を行い、 発電所から火災を発生させないよう全力を尽くしています。

② 未経験の運転員ばかりで運転できるの?

※ 6・7号機に限定すると約50%

●日々の訓練や稼働している他社の火力発電所等での訓練の様子

- 福島第一原子力発電所事故よりも厳しい状況を想定した訓練を重ねています。
- ・ 稼働している他社の原子力発電所や共通する設備の多い火力発電所で、**プラント運営に 必要な感覚や経験を高めています**。

●若手運転員の指導の様子

若手運転員の力量向上のため、訓練や現場で作業をする際は、ベテランの運転員が同行し 操作のアドバイスや失敗したときの危険性等を指導しています。

~運転業務を担う社員の声~

すがなみ せいき

菅波 盛己 6・7号機当直長…6・7号機運転操作等に係る指揮・責任者 これまでの運転経験を踏まえた現場指導や技術継承による後進育成に取り組んでいます。運転時もベテラン運転員によるサポート体制を構築しています。

- IDカードを不正に使うなどといった警備上の問題はもう起こらないの?
- A IDカード不正使用などの警備上の問題を起こさないよう、 核物質を適切に護るための改善を進めています。

● 核物質を適切に護るための改善の取り組み

- 柏崎刈羽原子力発電所では、IDカード不正使用等の核物質防護※1に関わる問題に対し、 設備と運用の両面から、警備の精度を上げるための改善活動を進めています。
- ・ また、警備に関する「現場の気づきを積極的に共有して迅速に見直す」取り組みを発電所全体で進め、その取り組みに**緩みが生じないよう、社長直属の組織(モニタリング室)で** チェックしています。
- IAEAのレビュー^{※2}でも「改善措置計画のほとんどが完了し、一連の問題の根本原因に 対処した」と評価をいただいております。
 - ※1 原子力発電所への悪意を持つ者の侵入や妨害・破壊行為等を防ぎ、核物質の盗取や悪用を防ぐこと
 - ※2 国際原子力機関にて、国際基準に照らして核物質防護事案の改善措置について、評価・助言をいただくもの

【設備面での取り組み(設備の強化)】

【運用面での取り組み】

~警備業務を担う協力企業社員・発電所員の声~

たまきりゅうすけ

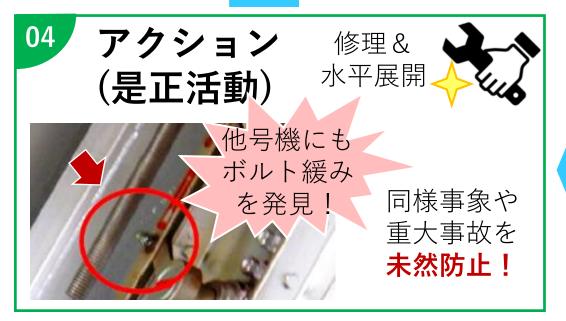
玉木 竜介 新潟綜合警備保障 柏崎刈羽原子力警備支社 支社長 **発電所で働く人たちの警備に協力しようという機運が高まってきた**と感じています。 私たちも、東京電力社員と一緒に警備を改善していこうという雰囲気になっています。

ほりかわ たけし

堀川 健 柏崎刈羽原子力発電所 セキュリティ管理部長(発電所の核防護管理責任者) 発電所で働く一人ひとりに至るまで、警備の目的をふまえた取り組みを伝え、理解いただく活動は、 まだ十分とは言い切れません。引き続き教育や対話を継続し、警備の改善に取り組んでいきます。

- ・ラブルやミスが多いけど、東京電力って大丈夫なの?
- トラブルやミスが起こった場合も、問題を特定し是正することで、 大きなトラブルに発展させない、同じミスを繰り返さないよう 努めています。また、第三者から外部目線でご確認をいただき、 改善を重ねています。
- 自ら課題や気づきを発見·改善する取り組み※1

キャップ コレクティブ アクション プログラム


※1 是正処置プログラム = CAP (Corrective Action Program)

 協力企業の方々含め、発電所で働く全員が日々の現場や業務における「気づき」を共有し、 問題の特定・是正活動につなげる取り組みです。

● 第三者(外部専門家)からの評価

- ・ 核物質防護事案への取り組みについては、第三者委員会(改善措置評価委員会^{※2}、 核セキュリティ専門家評価委員会^{※3})から「改善が継続して図られている」</mark>と確認を いただきました。
- 緊急時の対応訓練については、原子力改革監視委員会※4から「発電所の安全レベルは 非常に高いところに達している」、「運転員は複雑なシナリオに対応しており感銘を受けた」 といった評価をいただきました。
- ※2 当社の「改善措置を一過性のもとのしない取り組み」について、外部の独立した立場や専門的知見から客観的な評価を行う委員会
- ※3 社外専門家の視点で、当社の核セキュリティに関わる取り組みを評価する委員会
- ※4 国内外の有識者で構成され、当社の「原子力安全」と「社会からの信頼回復」に向けた取り組みを外部の視点で監視・監督する委員会

トラブルが起きた際は、隠さず・速やかに公表してほしい。

発電所で発生した<u>すべての不適合</u>*1は、公表基準*2に則って、 速やかに公表しています。

※1 「不適合」 …本来あるべき状態や本来行うべき行為と異なる状態

※2 「公表基準」…災害・設備故障・トラブル等の内容や重要度に応じて公表するタイミング等を定めたもの 例えば、火災の発生等の場合は、夜間・休祭日を問わず、速やかに公表

●不適合の公表方法

当社ホームページへの掲載等でお知らせするとともに、記者会見(月2回)や「柏崎刈羽原子力発電所の透明性を確保する地域の会」等でご説明しています。

ホームページ


所長会見

プレスリリース

● 不適合の公表のスピード (例)

・核物質防護事案は、是正対策を行い、防護上の安全性を確認した段階でお知らせしているため、発生から公表までに時間がかかる場合もありますが、対策完了後、速やかに公表しています。

■ 2024年1月1日に発生した能登半島地震の場合

■ 2023年1月19日に発生した未許可スマートフォン持込事案(核物質防護事案)の場合

1/19

事実確認·公表 に関する会議

是正対策 安全性の確認

4/13

② 県内で電気は使われず、住民にメリットがないのでは?

 柏崎刈羽原子力発電所は日本のエネルギー政策に貢献し、 自然災害等より、太平洋側の多くの発電所が停止するような際は、電力融通※により東日本全体の電力供給に貢献することができます。また、立地していることで雇用拡大等の経済波及効果があります。 ※ 電力不足が懸念される場合に、電力会社間で電力を融通しあうことで停電を防ぐこと

●東日本大震災時の首都圏への電力供給

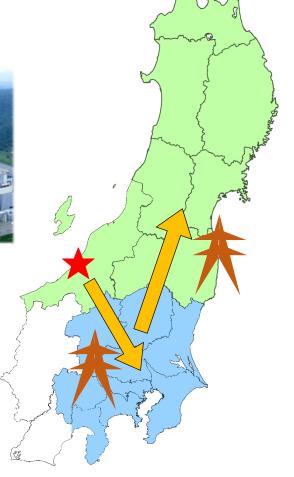
・東日本大震災の翌日(2011年3月12日)においても首都圏への電力供給に貢献した のは、運転中だった1,5,6,7号機でした。

東日本大震災翌日の電力供給

当社管内	柏崎刈羽(1,5,6,7号機)
電力需要	発電電力量
約7.2億kWh	約1.2億kWh

当社管内電力需要の約17%を担い、ベースロード電源として貢献

●新潟・福島豪雨災害時の電力融通


- ・2011年7月の<u>新潟・福島豪雨災害では、東北電力の多くの水力発電所が被害を受けて</u> 停止し、約100万kWの供給力が失われました。
- ・当時、**5,6,7号機が運転中であったことから、他電力会社と協調しながら最大170万kW の電力融通に応えることができ、新潟県を含む東北電力エリアの電力安定供給に貢献**する ことができました。

新潟・福島豪雨災害後の電力融通(イメージ)

柏崎刈羽原子力発電所

柏崎刈羽原子力発電所で作られた電気は 首都圏の電力需給余力を生み、**東北電力** エリアへの電力融通を実現

出典:東京電力パワーグリッドHP

●柏崎刈羽原子力発電所の従業員数

・現在、東京電力の社員や協力企業の方を合わせ、**6,000人以上の従業員が働いており、 そのうち約8割が新潟県内在住**で、新潟県内の方々に支えられ運営しています。

	柏崎市·刈羽村	その他新潟県内	新潟県外	合計
東京電力 社員	902	170	117	1,189
協力企業 社員	2,506	1,385	1,524	5,415
地域別の合計 ③=①+②	3,408	1,555	1,641	[全体合計] 6,604
全従業員に占める割合 ③÷④	52%	24%	25%	

(単位:人/2025年10月1日時点)

※小数点以下を繰上げて表示しているため、合計100%を越える場合があります。

Q

燃料プールがいっぱいなのに運転できるの?

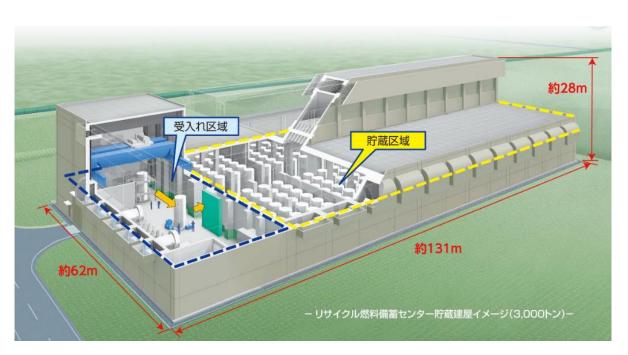
使用済燃料を運転していない号機に輸送することや、中間貯蔵施設に輸送することで運転が可能です。

●燃料プールにおける燃料の保管状況

現在、発電所では13,573体の燃料を保管しており、管理容量※に対して約80%の貯蔵率となっています。

※ 貯蔵容量から1炉心分(1~5号機:764体、6,7号機:872体)の燃料を除いた容量 (炉心の燃料を燃料プールに移動する際、空けておく必要があるため)

	1号機	2号機	3号機	4号機	5号機	6号機	7号機	合 計
貯蔵容量(体)	2,790	3,239	3,212	3,209	3,175	3,410	3,444	22,479
管理容量(体)	2,026	2,475	2,448	2,445	2,411	2,538	2,572	16,915
貯蔵量(体)	1,835	1,759	2,113	1,453	1,934	2,352	2,127	13,573
貯蔵率(%)	約91	約71	約86	約59	約80	約93	約83	約80

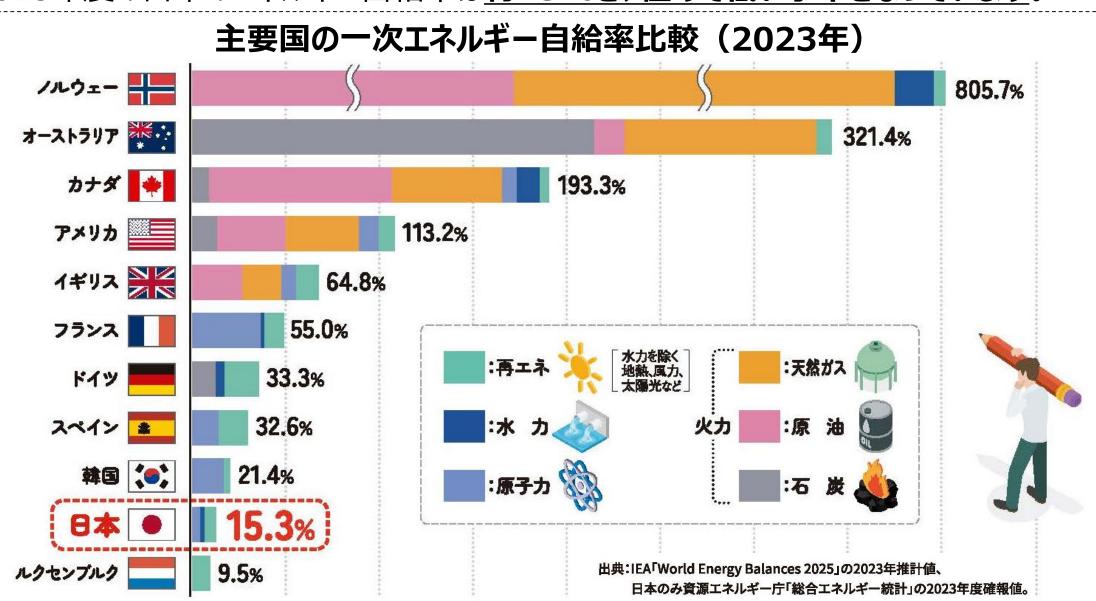

(2025年10月30日時点)

●号機間輸送の実施

 7号機は使用済燃料プールの貯蔵率が約97%(貯蔵量の約3割は、他号機から輸送された燃料)であったことから、運転していない3号機に使用済燃料380体を輸送(号機間 輸送)しました。これにより、7号機の貯蔵率は約83%になりました。

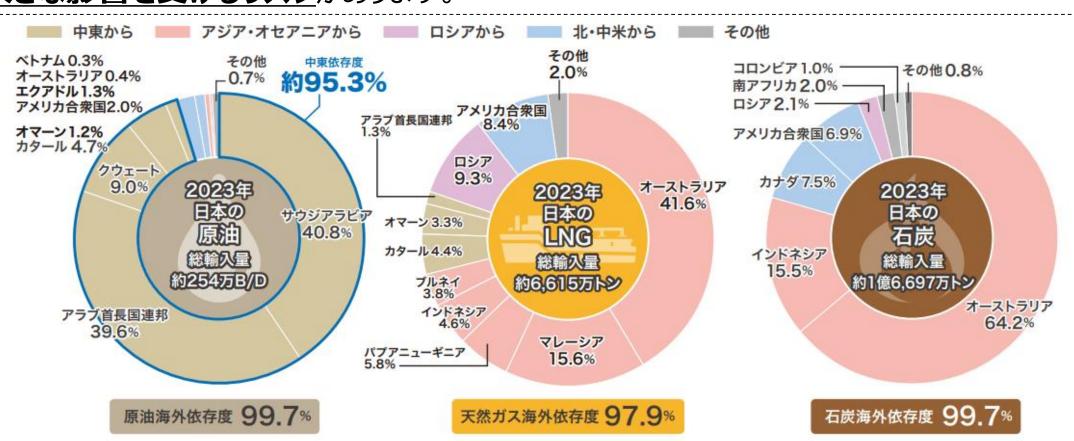
●中間貯蔵施設への輸送

- 当社と日本原子力発電株式会社は、2社の原子力発電所から発生する使用済燃料の 貯蔵・管理を目的として、2005年11月に青森県むつ市に「リサイクル燃料貯蔵株式会社」 を設立しました。
- 柏崎刈羽原子力発電所からリサイクル燃料備蓄センターに使用済燃料を2024年9月に 69体、2025年10月に138体輸送しました。

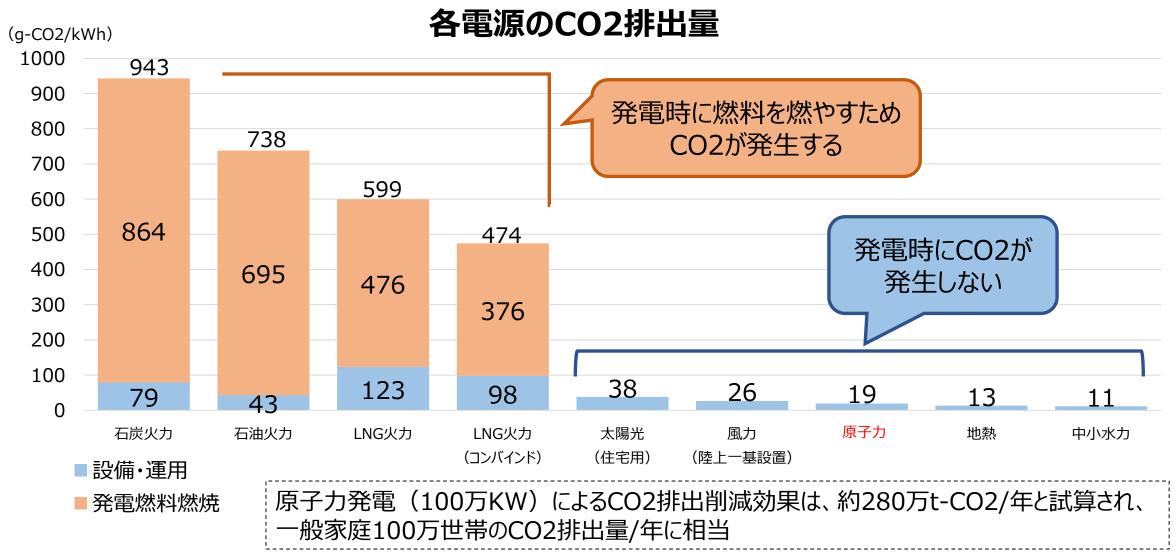


出典:リサイクル燃料貯蔵株式会社

- ② 電気は足りているのに原子力発電所を再稼働する 必要はあるの?
- 本 電気を安定的にお届けすることは当社の責務であり、そのためにも原子力の活用は必要と考えています。

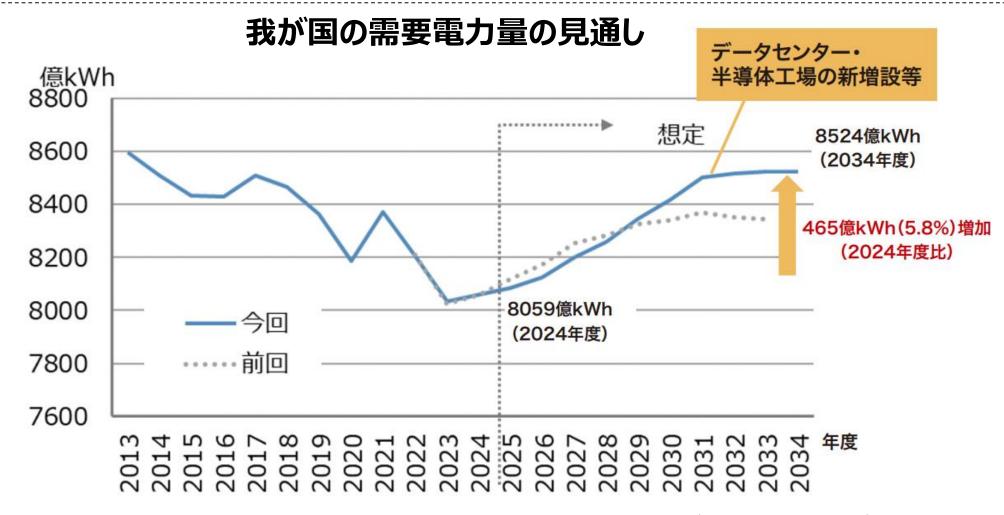

●日本のエネルギー自給率

・2023年度の日本のエネルギー自給率は約15%と、極めて低い水準となっています。


●エネルギーの安定確保とリスク

・火力発電の燃料となる化石燃料(石油・石炭・天然ガス)は、海外からの輸入に頼っており、エネルギー確保において、中東情勢の不安定化やウクライナ情勢など、世界の動きに大きな影響を受けるリスクがあります。

●CO2の排出量


・<u>電気事業におけるCO2排出量は、日本全体の3分の1以上を占め、地球温暖化に大きな</u> 影響をおよぼします。

電力中央研究所資料(2016.7)をもとに作成

●国内の電力需要の増加

- ・近年のデータビジネスの拡大やAIの急速な普及により、データセンターや半導体工場の新増 設が増加し、今後の電力需要は増加することが見込まれています。
- ・また、人手不足が経済の課題となっている中、ロボットやAIによる省人化・無人化の動きも拡大しており、これらも電力需要を増加させうる要因のひとつとなっています。
- ・脱炭素時代における電力の安定供給には、**原子力も含めた脱炭素電源の供給力の強化** が必要と考えています。

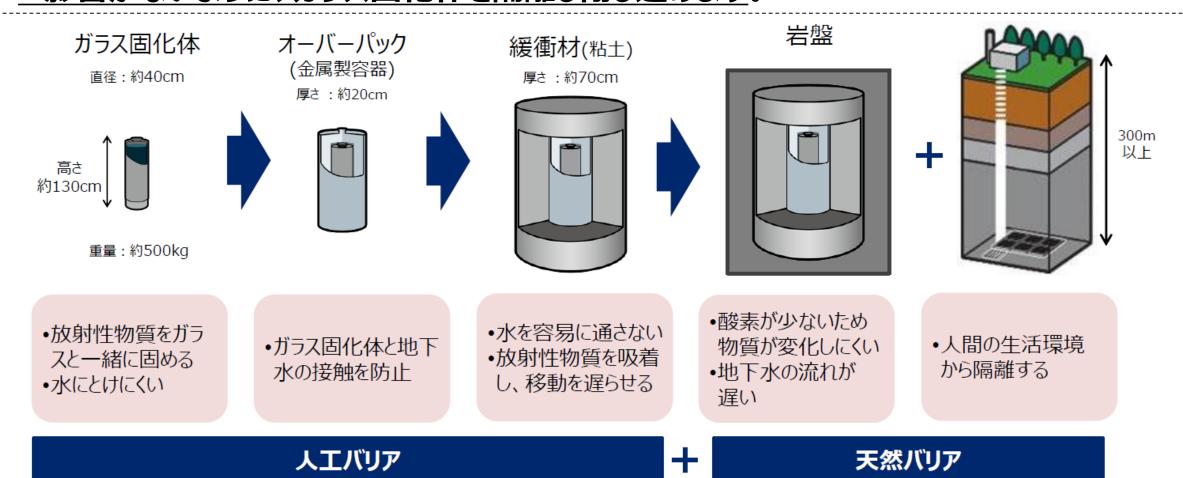
出典:資源エネルギー庁「日本のエネルギー」2025年3月発行

● バランスのとれた電源構成 (エネルギーミックス)

- **資源に乏しい日本において、**安全の確保を大前提に、安定供給、経済性、環境適合を同時に達成する(S+3E)ためには、火力発電や再生可能エネルギーによる発電、原子力発電等様々な電源を、**それぞれの強みを生かして適切なバランスで組み合わせることが重要**です。
- ・<u>原子力発電は、天候によらず安定的な発電出力を確保できること、燃料調達のリスクを</u> 低減できること、発電時にCO2が発生しないこと等から必要と考えています。

各発電方法のメリット・デメリット

発電方法	火力発電 (石油・石炭・天然ガス)	再生可能 エネルギー による発電 (水力・太陽光・風力など)	原子力発電
メリット	・高出力で安定した電気ができる・出力の調整がしやすい	・エネルギー源は自然のもので 尽きることがない・発電時にCO2が発生しない	・ウラン燃料の埋蔵地域が 世界に広く分布 ・発電時にCO2が発生しない
デメリット	・資源価格の変動の影響を 受ける・資源を輸入に頼っている・発電時にCO2が発生する	・自然条件に左右されるため発電が不安定・まとまった電力を得るためには 広大な面積が必要	・放射性廃棄物の適切な 処理・処分が必要 ・安全の確保が重要


- 核のゴミの処分場所も決まっていないのに、本当に運転 するの ?
- 処分地の選定は最終処分法※に基づき、原子力発電環境整 備機構(NUMO)が行います。当社としても廃棄物の発生 者としてNUMOの支援や理解活動に取り組んでいます。

※ 特定放射性廃棄物の最終処分に関する法律

● 高レベル放射性廃棄物(ガラス固化体)の処分方法

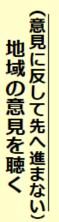
・日本では、ガラス固化体を地下300メートル以深の、安定した地層に処分する方針であり、 地層処分が最適であるとの認識は国際的に共有されています。

地層処分では、地下深部の天然バリアに、人工バリアを組み合わせることで、**人間の生活環境** へ影響がないように、ガラス固化体を隔離し閉じ込めます。

出典:原子力発電環境整備機構 高レベル放射性廃棄物の最終処分に関する対話型全国説明会説明資料

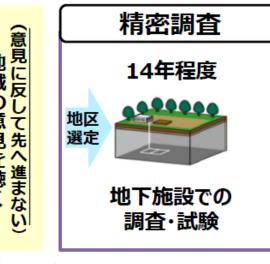
処分地選定プロセス

・最終処分法では、概要調査(ボーリング調査等)、精密調査(地下施設における調査) **を経て、処分地を選定**します。なお、地域の意見に反して、調査が先に進むことはありません。


20年程度の調査期間中、放射性廃棄物は一切持ち込まない

市町村から応募

又は


国の申入を 市町村が受諾

施設 建設地 の選定

プロセス 調査結果× 又は 御意見× 終了

調査結果× プロセス 又は 御意見× 終了

プロセス 調査結果× 又は 御意見× 終了

出典:原子力発電環境整備機構 高レベル放射性廃棄物の最終処分に関する対話型全国説明会説明資料